Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean

نویسندگان

  • Shalin Seebah
  • Caitlin Fairfield
  • Matthias S. Ullrich
  • Uta Passow
چکیده

Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira weissflogii (diatom) in the presence or absence of bacteria under two temperature and three pCO2 scenarios. During the aggregation phase of the experiment TEP formation was elevated at the higher temperature (20°C vs. 15°C), as predicted. However, in contrast to expectations based on the established relationship between TEP and aggregation, aggregation rates and sinking velocity of aggregates were depressed in warmer treatments, especially under ocean acidification conditions. If our experimental findings can be extrapolated to natural conditions, they would imply a reduction in carbon flux and potentially reduced carbon sequestration after diatom blooms in the future ocean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Putative Iron Responsive Genes as Species-Specific Indicators of Iron Stress in Thalassiosiroid Diatoms

Iron (Fe) availability restricts diatom growth and primary production in large areas of the oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom populations, since species can differ in their physiological and molecular responses to Fe limitation. We assayed expression of selected genes in diatoms from the Thalassiosira genus to assess their potential utility as ...

متن کامل

Evidence for reduced biogenic silica dissolution rates in diatom aggregates

Because aggregated diatoms sink rapidly through the water column, leaving little time for dissolution, aggregation influences the balance between recycling of biogenic silica (bSiO2) and its sedimentation and preservation at the seafloor. Additionally, aggregation may directly impact dissolution rates of opal. Laboratory experiments were conducted to investigate the influence of aggregation on ...

متن کامل

Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii

The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of i...

متن کامل

Coupling Effects of Silicate, Iron and Other Various Abiotic Variables on Growth of Two Diatoms, Phaeodactylum Tricornutum and Thalassiosira Weissflogii and Their Silicon Utilization

The effects of various Abiotic factors, including concentrations of silicate and iron, temperature, light intensity and salinity of media on two purebred red tide diatoms, Phaeodactylum tricornutum and Thalassiosira weissflogii were investigated through single and full factorial experiments. The single-factor experiments showed diatom Phaeodactylum tricornutum had the fastest growth rate with i...

متن کامل

Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions

Knowing which fraction of a phytoplankton population is viable would often be helpful in answering ecological or physiological questions. However, viability stains (1) often do not function properly, especially with diatoms, (2) are rarely used, and (3) frequently appear to give ambiguous results. Here, we investigate the performance of the FDA viability assay in detail and test its applicabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014